Package: forecastSNSTS (via r-universe)

September 5, 2024

Title Forecasting for Stationary and Non-Stationary Time Series

Version 1.2-0.9000

Description Methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-Walker estimates and empirical mean squared and absolute prediction errors for the resulting predictors. Also, functions to compute autocovariances for $AR(p)$ processes, to simulate tv $ARMA(p,q)$ time series, and to verify an assumption from Kley et al. (2017), Preprint <<http://personal.lse.ac.uk/kley/forecastSNSTS.pdf>>.

Depends $R (= 3.2.3)$

License GPL $(>= 2)$

URL <http://github.com/tobiaskley/forecastSNSTS>

BugReports <http://github.com/tobiaskley/forecastSNSTS/issues>

Encoding UTF-8

LazyData true

LinkingTo Rcpp

Imports Rcpp

Collate 'RcppExports.R' 'acfARp.R' 'f.R' 'forecastSNSTS-package.R' 'measure-of-accuracy.R' 'models.R'

RoxygenNote 6.0.1

Suggests testthat

Repository https://tobiaskley.r-universe.dev

RemoteUrl https://github.com/tobiaskley/forecastsnsts

RemoteRef HEAD

RemoteSha 484fed0c1f146c06e02df72541641fbdc67d7964

Contents

forecastSNSTS-package *Forecasting of Stationary and Non-Stationary Time Series*

Description

Methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-Walker estimates and empirical mean squared and absolute prediction errors for the resulting predictors. Also, functions to compute autocovariances for $AR(p)$ processes, to simulate tvARMA(p,q) time series, and to verify an assumption from Kley et al. (2017).

Details

Contents

The core functionality of this R package is accessable via the function [predCoef](#page-8-1), which is used to compute the linear prediction coefficients, and the functions [MSPE](#page-6-1) and [MAPE](#page-6-1), which are used to compute the empirical mean squared or absolute prediction errors. Further, the function [f](#page-4-1) can be used to verify condition (10) of Theorem 3.1 in Kley et al. (2017) for any given tvAR (p) model. The function [tvARMA](#page-10-1) can be used to simulate time-varying $ARMA(p,q)$ time series. The function $acfARP$ computes the autocovariances of a $AR(p)$ process from the coefficients and innovations standard deviation.

Author(s)

Tobias Kley

 $acfARp$ 3

References

Kley, T., Preuss, P. & Fryzlewicz, P. (2017). Predictive, finite-sample model choice for time series under stationarity and non-stationarity. [cf. [http://personal.lse.ac.uk/kley/forecastSNSTS.](http://personal.lse.ac.uk/kley/forecastSNSTS.pdf) [pdf](http://personal.lse.ac.uk/kley/forecastSNSTS.pdf)]

acfARp *Compute autocovariances of an AR(p) process*

Description

This functions returns the autocovariances $Cov(X_{t-k}, X_t)$ of a stationary time series (Y_t) that fulfills the following equation:

$$
Y_t = \sum_{j=1}^p a_j Y_{t-j} + \sigma \varepsilon_t,
$$

where $\sigma > 0$, ε_t is white noise and a_1, \ldots, a_p are real numbers satisfying that the roots z_0 of the polynomial $1 - \sum_{j=1}^{p} a_j z^j$ lie strictly outside the unit circle.

Usage

 $acfARP(a = NULL, sigma, k)$

Arguments

Value

Returns autocovariance at lag k of the AR(p) process.

Examples

```
## Taken from Section 6 in Dahlhaus (1997, AoS)
a1 <- function(u) \{1.8 \times \cos(1.5 - \cos(4 \times pi \times u))\}a2 <- function(u) {-0.81}
# local autocovariance for u === 1/2: lag 1
acfARP(a = c(a1(1/2), a2(1/2)), sigma = 1, k = 1)# local autocovariance for u === 1/2: lag -2
acfARP(a = c(a1(1/2), a2(1/2)), sigma = 1, k = -1)# local autocovariance for u === 1/2: the variance
acfARP(a = c(a1(1/2), a2(1/2)), signa = 1, k = 0)
```
Description

This function computes the estimated mean squared prediction errors from a given time series and prediction coefficients

Arguments

Details

The array of prediction coefficients coef is expected to be of dimension $P \times P \times H \times length(N)$ x length(t) and in the format as it is returned by the function [predCoef](#page-8-1). More precisely, for $p = 1, \ldots, P$ and the j. Nth element of N element of N the coefficient of the h-step ahead predictor for X_{i+h} which is computed from the observations X_i, \ldots, X_{i-p+1} has to be available via coef[p, 1:p, h, j.N, t==i].

Note that t have to be the indices corresponding to the coefficients.

The resulting mean squared prediction error

$$
\frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} (X_{t+h} - (X_t, \dots, X_{t-p+1}) \hat{v}_{N[j,N],T}^{(p,h)}(t))^2
$$

is then stored in the resulting matrix at position (p, j.N).

Value

Returns a P x length(N) matrix with the results.

Description

This functions computes the quantity $f(\delta)$ defined in (10) of Kley et al. (2017) when the underlying process follows an tvAR(p) process. Recall that, to apply Theorem 3.1 in Kley et al. (2017), the function $f(\delta)$ is required to be positive, which can be verified with the numbers returned from this function. The function returns a vector with elements $f(\delta)$ for each δ in which.deltas, with $f(\delta)$ defined as

$$
f(\delta) := \min_{p_1, p_2 = 0, \dots, p_{\text{max}}} \min_{N \in \mathcal{N}} \left| \text{MSPE}_{s_1/T, m/T}^{(p_1, h)}(\frac{s_1}{T}) - (1 + \delta) \cdot \text{MSPE}_{N/T, m/T}^{(p_2, h)}(\frac{s_1}{T}) \right|, \quad \delta \ge 0
$$

where T, m, p_{max} , h are positive integers, $\mathcal{N} \subset \{p_{\text{max}}+1, \ldots, T-m-h\}$, and $s_1 := T-m-h+1$.

Usage

f(which.deltas, p_max, h, T, Ns, m, a, sigma)

Arguments

Details

The function $\text{MSPE}_{\Delta_1,\Delta_2}^{(p,h)}(u)$ is defined, for real-valued u and $\Delta_1,\Delta_2\geq 0$, in terms of the second order properties of the process:

$$
\text{MSPE}_{\Delta_1, \Delta_2}^{(p,h)}(u) := \int_0^1 g_{\Delta_1}^{(p,h)} \left(u + \Delta_2 (1-x) \right) dx,
$$

with $g_{\Delta}^{(0,h)}(u) := \gamma_0(u)$ and, for $p = 1, 2, ...$,

$$
g_{\Delta}^{(p,h)}(u) := \gamma_0(u) - 2(v_{\Delta}^{(p,h)}(u))'\gamma_0^{(p,h)}(u) + (v_{\Delta}^{(p,h)}(u))'\Gamma_0^{(p)}(u)v_{\Delta}^{(p,h)}(u)
$$

$$
\gamma_0^{(p,h)}(u) := (\gamma_h(u), \dots, \gamma_{h+p-1}(u))',
$$

where

$$
v_{\Delta}^{(p,h)}(u) := e'_1 \big(e_1 \big(a_{\Delta}^{(p)}(t) \big)' + H \big)^h,
$$

with e_1 and H defined in the documentation of [predCoef](#page-8-1) and, for every real-valued u and $\Delta \geq 0$,

$$
a_{\Delta}^{(p)}(u) := \Gamma_{\Delta}^{(p)}(u)^{-1} \gamma_{\Delta}^{(p)}(u),
$$

where

$$
\gamma_{\Delta}^{(p)}(u) := \int_0^1 \gamma^{(p)}(u + \Delta(x - 1)) dx, \quad \gamma^{(p)}(u) := [\gamma_1(u) \ \dots \ \gamma_p(u)]',
$$

$$
\Gamma_{\Delta}^{(p)}(u) := \int_0^1 \Gamma^{(p)}(u + \Delta(x - 1)) dx, \quad \Gamma^{(p)}(u) := (\gamma_{i-j}(u); i, j = 1, \dots, p).
$$

The local autocovariances $\gamma_k(u)$ are defined as the lag-k autocovariances of an AR(p) process which has coefficients $a_1(u), \ldots, a_p(u)$ and innovations with variance $\sigma(u)^2$, because the underlying model is assumed to be tvAR(p)

$$
Y_{t,T} = \sum_{j=1}^{p} a_j(t/T)Y_{t-j,T} + \sigma(t/T)\varepsilon_t,
$$

where a_1, \ldots, a_p are real valued functions (defined on [0, 1]) and σ is a positive function (defined on $[0, 1]$).

Value

Returns a vector with the values $f(\delta)$, as defined in (10) of Kley et al. (2017), for each δ in which.delta.

Examples

```
## Not run:
## because computation is quite time-consuming.
n <- 100
a \leftarrow list( function(u) {return(0.8+0.19*sin(4*pi*u))})
sigma <- function (u) {return(1)}
Ns <- seq( floor((n/2)^*(4/5)), floor(n*(4/5)),
           ceiling((floor(n^(4/5)) - floor((n/2)^(4/5)))/25) )
which.deltas <- c(0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6)
P_{max} < -7H < -1m \le -floor(n^*(.85)/4)# now replicate some results from Table 4 in Kley et al. (2017)
f( which.deltas, P_{max}, h = 1, n - m, Ns, m, a, sigma )
f( which.deltas, P_{max}, h = 5, n - m, Ns, m, a, sigma )
## End(Not run)
```
measure-of-accuracy *Mean squared or absolute* h*-step ahead prediction errors*

Description

The function MSPE computes the empirical mean squared prediction errors for a collection of h-step ahead, linear predictors ($h = 1, \ldots, H$) of observations X_{t+h} , where $m_1 \leq t + h \leq m_2$, for two indices m_1 and m_2 . The resulting array provides

$$
\frac{1}{m_{\text{lo}} - m_{\text{up}} + 1} \sum_{t=m_{\text{lo}}}^{m_{\text{up}}} R_{(t)}^2,
$$

with $R(t)$ being the prediction errors

$$
R_t := |X_{t+h} - (X_t, \dots, X_{t-p+1})\hat{v}_{N,T}^{(p,h)}(t)|,
$$

ordered by magnitude; i.e., they are such that $R(t) \leq R(t+1)$. The lower and upper limits of the indices are $m_{\text{lo}} := m_1 - h + \lfloor (m_2 - m_1 + 1)\alpha_1 \rfloor$ and $m_{\text{up}} := m_2 - h - \lfloor (m_2 - m_1 + 1)\alpha_2 \rfloor$. The function MAPE computes the empirical mean absolute prediction errors

$$
\frac{1}{m_{\text{lo}} - m_{\text{up}} + 1} \sum_{t=m_{\text{lo}}}^{m_{\text{up}}} R_{(t)},
$$

with m_{lo} , m_{up} and $R_{(t)}$ defined as before.

Usage

```
MSPE(X, predcoef, m1 = length(X)/10, m2 = length(X), P = 1, H = 1,
 N = c(0, seq(P + 1, m1 - H + 1)), trimLo = 0, trimUp = 0)
```

```
MAPE(X, predcoef, m1 = length(X)/10, m2 = length(X), P = 1, H = 1,
 N = c(0, seq(P + 1, m1 - H + 1)), trimLo = 0, trimUp = 0)
```
Arguments

Value

MSPE returns an object of type MSPE that has mspe, an array of size $H \times P \times length(N)$, as an attribute, as well as the parameters N, m1, m2, P, and H. MAPE analogously returns an object of type MAPE that has mape and the same parameters as attributes.

Examples

```
T < - 1000X \leftarrow \text{norm}(T)P < -5H < -1m < -20Nmin <- 20
pcoef <- predCoef(X, P, H, (T - m - H + 1): T, c(0, seq(Nmin, T - m - H, 1)))
mspe <- MSPE(X, pcoef, 991, 1000, 3, 1, c(0, Nmin:(T-m-H)))
plot(mspe, vr = 1, Nmin = Nmin)
```
plot.measure-of-accuracy

Plot a MSPE *or* MAPE *object*

Description

The function plot.MSPE plots a MSPE object that is returned by the MSPE function. The function plot.MAPE plots a MAPE object that is returned by the MAPE function.

Usage

```
## S3 method for class 'MSPE'
plot(x, vr = NULL, h = 1, N.min = 1, legend = TRUE,display.mins = TRUE, add.for.legend = 0, ...)
## S3 method for class 'MAPE'
plot(x, vr = NULL, h = 1, N.min = 1, legend = TRUE,display.mins = TRUE, add.for.legend = 0, ...)
```
predCoef 99 and 200 predCoef 9

Arguments

Value

Returns the plot, as specified.

See Also

[MSPE](#page-6-1), [MAPE](#page-6-1)

predCoef h*-step Prediction coefficients*

Description

This function computes the localised and iterated Yule-Walker coefficients for h-step ahead forecasting of X_{t+h} from $X_t, ..., X_{t-p+1}$, where $h = 1, ..., H$ and $p = 1, ..., P$.

Arguments

Details

For every $t \in \mathsf{t}$ and every $N \in \mathsf{N}$ the (iterated) Yule-Walker estimates $\hat{v}_{N,T}^{(p,h)}(t)$ are computed. They are defined as

$$
\hat{v}_{N,T}^{(p,h)}(t) := e'_1 \big(e_1 \big(\hat{a}_{N,T}^{(p)}(t) \big)' + H \big)^h, \quad N \ge 1,
$$

and

$$
\hat{v}_{0,T}^{(p,h)}(t) := \hat{v}_{t,T}^{(p,h)}(t),
$$

with

$$
e_1:=\left(\begin{array}{c}1\\0\\ \vdots\\ 0\end{array}\right),\quad H:=\left(\begin{array}{cccc}0&0&\cdots&0&0\\1&0&\cdots&0&0\\0&1&\cdots&0&0\\ \vdots&\ddots&\cdots&0&0\\0&0&\cdots&1&0\end{array}\right)
$$

and

$$
\hat{a}_{N,T}^{(p)}(t) := (\hat{\Gamma}_{N,T}^{(p)}(t))^{-1} \hat{\gamma}_{N,T}^{(p)}(t),
$$

where

$$
\hat{\Gamma}_{N,T}^{(p)}(t) := \left[\hat{\gamma}_{i-j;N,T}(t)\right]_{i,j=1,\ldots,p}, \quad \hat{\gamma}_{N,T}^{(p)}(t) := \left(\hat{\gamma}_{1;N,T}(t),\ldots,\hat{\gamma}_{p;N,T}(t)\right)^{\prime}
$$

and

$$
\hat{\gamma}_{k;N,T}(t):=\frac{1}{N}\sum_{\ell=t-N+|k|+1}^{t}X_{\ell-|k|,T}X_{\ell,T}
$$

is the usual lag- k autocovariance estimator (without mean adjustment), computed from the observations X_{t-N+1}, \ldots, X_t .

The Durbin-Levinson Algorithm is used to successively compute the solutions to the Yule-Walker equations (cf. Brockwell/Davis (1991), Proposition 5.2.1). To compute the h -step ahead coefficients we use the recursive relationship

$$
\hat{v}_{i,N,T}^{(p)}(t,h) = \hat{a}_{i,N,T}^{(p)}(t)\hat{v}_{1,N,T}^{(p,h-1)}(t) + \hat{v}_{i+1,N,T}^{(p,h-1)}(t)I\{i \le p-1\},\,
$$

(cf. the proof of Lemma E.3 in Kley et al. (2017)).

Value

Returns a named list with elements coef, t, and N, where coef is an array of dimension $P \times P \times H$ \times length(t) \times length(N), and t, and N are the parameters provided on the call of the function. See the example on how to access the vector $\hat{v}_{N,T}^{(p,h)}(t)$.

References

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods. Springer, New York.

ts-models-tvARMA 11

Examples

```
T < - 100X \leq -rnorm(T)P \le -5H < -1m < - 20Nmin <- 25
pcoef <- predCoef(X, P, H, (T - m - H + 1):T, c(0, seq(Nmin, T - m - H, 1)))
## Access the prediction vector for p = 2, h = 1, t = 95, N = 25p \le -2h <- 1
t <- 95
N < -35res <- pcoef$coef[p, 1:p, h, pcoef$t == t, pcoef$N == N]
```
ts-models-tvARMA *Simulation of an tvARMA(p) time series.*

Description

Returns a simulated time series $Y_{1,T},...,Y_{T,T}$ that fulfills the following equation:

$$
Y_{t,T} = \sum_{j=1}^{p} a_j(t/T)Y_{t-j,T} + \sigma(t/T)\varepsilon_t + \sum_{k=1}^{q} \sigma((t-k)/T)b_k(t/T)\varepsilon_{t-k},
$$

where $a_1, \ldots, a_p, b_0, b_1, \ldots, b_q$ are real-valued functions on [0, 1], σ is a positive function on [0, 1] and ε_t is white noise.

Usage

```
tvARMA(T = 128, a = list(), b = list(), sigma = function(u) {
  return(1) }, innov = function(n) { rnorm(n, 0, 1) })
```
Arguments

Value

Returns a tvARMA(p,q) time series with specified parameters.

Examples

```
## Taken from Section 6 in Dahlhaus (1997, AoS)
a1 <- function(u) {1.8 * cos(1.5 - cos(4 * pi * u))}
a2 \leftarrow function(u) \{-0.81\}plot(tvARMA(128, a = list(a1, a2), b = list()); type = "l")
```
tvARMAcpp *Workhorse function for tvARMA time series generation*

Description

More explanation!

Arguments

Value

Returns a ...

Index

acfARp, *[2](#page-1-0)*, [3](#page-2-0)

computeMSPEcpp, [4](#page-3-0)

f, *[2](#page-1-0)*, [5](#page-4-0)

forecastSNSTS *(*forecastSNSTS-package*)*, [2](#page-1-0) forecastSNSTS-package, [2](#page-1-0)

MAPE, *[2](#page-1-0)*, *[9](#page-8-0)* MAPE *(*measure-of-accuracy*)*, [7](#page-6-0) measure-of-accuracy, [7](#page-6-0) MSPE, *[2](#page-1-0)*, *[9](#page-8-0)* MSPE *(*measure-of-accuracy*)*, [7](#page-6-0)

plot.MAPE *(*plot.measure-of-accuracy*)*, [8](#page-7-0) plot.measure-of-accuracy, [8](#page-7-0) plot.MSPE *(*plot.measure-of-accuracy*)*, [8](#page-7-0) predCoef, *[2](#page-1-0)*, *[4](#page-3-0)*, *[6,](#page-5-0) [7](#page-6-0)*, [9](#page-8-0)

ts-models-tvARMA, [11](#page-10-0) tvARMA, *[2](#page-1-0)* tvARMA *(*ts-models-tvARMA*)*, [11](#page-10-0) tvARMAcpp, [12](#page-11-0)