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forecastSNSTS-package Forecasting of Stationary and Non-Stationary Time Series

Description

Methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-
Walker estimates and empirical mean squared and absolute prediction errors for the resulting pre-
dictors. Also, functions to compute autocovariances for AR(p) processes, to simulate tvARMA(p,q)
time series, and to verify an assumption from Kley et al. (2017).

Details

Package: forecastSNSTS
Type: Package
Version: 1.2-0
Date: 2017-06-18
License: GPL (>= 2)

Contents

The core functionality of this R package is accessable via the function predCoef, which is used
to compute the linear prediction coefficients, and the functions MSPE and MAPE, which are used to
compute the empirical mean squared or absolute prediction errors. Further, the function f can be
used to verify condition (10) of Theorem 3.1 in Kley et al. (2017) for any given tvAR(p) model.
The function tvARMA can be used to simulate time-varying ARMA(p,q) time series. The function
acfARp computes the autocovariances of a AR(p) process from the coefficients and innovations
standard deviation.

Author(s)

Tobias Kley
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References

Kley, T., Preuss, P. & Fryzlewicz, P. (2017). Predictive, finite-sample model choice for time series
under stationarity and non-stationarity. [cf. http://personal.lse.ac.uk/kley/forecastSNSTS.
pdf]

acfARp Compute autocovariances of an AR(p) process

Description

This functions returns the autocovariances Cov(Xt−k, Xt) of a stationary time series (Yt) that
fulfills the following equation:

Yt =

p∑
j=1

ajYt−j + σεt,

where σ > 0, εt is white noise and a1, . . . , ap are real numbers satisfying that the roots z0 of the
polynomial 1−

∑p
j=1 ajz

j lie strictly outside the unit circle.

Usage

acfARp(a = NULL, sigma, k)

Arguments

a vector (a1, . . . , ap) of coefficients; default NULL, corresponding to p = 0, white
noise with variance σ2,

sigma standard deviation of εt; default 1,

k lag for which to compute the autocovariances.

Value

Returns autocovariance at lag k of the AR(p) process.

Examples

## Taken from Section 6 in Dahlhaus (1997, AoS)
a1 <- function(u) {1.8 * cos(1.5 - cos(4*pi*u))}
a2 <- function(u) {-0.81}
# local autocovariance for u === 1/2: lag 1
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = 1)
# local autocovariance for u === 1/2: lag -2
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = -1)
# local autocovariance for u === 1/2: the variance
acfARp(a = c(a1(1/2), a2(1/2)), sigma = 1, k = 0)

http://personal.lse.ac.uk/kley/forecastSNSTS.pdf
http://personal.lse.ac.uk/kley/forecastSNSTS.pdf
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computeMSPEcpp Mean Squared Prediction Errors, for a single h

Description

This function computes the estimated mean squared prediction errors from a given time series and
prediction coefficients

Arguments

X the data

coef the array of coefficients.

h which lead time to compute the MSPE for

t a vector of times from which backward the forecasts are computed

type indicating what type of measure of accuracy is to be computed; 1: mspe, 2:
msae

trimLo percentage of lower observations to be trimmed away

trimUp percentage of upper observations to be trimmed away

Details

The array of prediction coefficients coef is expected to be of dimension P x P x H x length(N)
x length(t) and in the format as it is returned by the function predCoef. More precisely, for
p = 1, . . . , P and the j.Nth element of N element of N the coefficient of the h-step ahead predictor
for Xi+h which is computed from the observations Xi, . . . , Xi−p+1 has to be available via coef[p,
1:p, h, j.N, t==i].

Note that t have to be the indices corresponding to the coefficients.

The resulting mean squared prediction error

1

|T |
∑
t∈T

(Xt+h − (Xt, . . . , Xt−p+1)v̂
(p,h)
N [j.N ],T (t))

2

is then stored in the resulting matrix at position (p, j.N).

Value

Returns a P x length(N) matrix with the results.
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f Compute f(δ) for a tvAR(p) process

Description

This functions computes the quantity f(δ) defined in (10) of Kley et al. (2017) when the underlying
process follows an tvAR(p) process. Recall that, to apply Theorem 3.1 in Kley et al. (2017), the
function f(δ) is required to be positive, which can be verified with the numbers returned from this
function. The function returns a vector with elements f(δ) for each δ in which.deltas, with f(δ)
defined as

f(δ) := min
p1,p2=0,...,pmax

min
N∈N

∣∣∣MSPE
(p1,h)
s1/T,m/T (

s1
T
)− (1 + δ) ·MSPE

(p2,h)
N/T,m/T (

s1
T
)
∣∣∣, δ ≥ 0

where T,m, pmax, h are positive integers, N ⊂ {pmax+1, . . . , T−m−h}, and s1 := T−m−h+1.

Usage

f(which.deltas, p_max, h, T, Ns, m, a, sigma)

Arguments

which.deltas vector containing the δ’s for which to to compute f(δ),

p_max parameter pmax,

h parameter h,

T parameter T ,

Ns a vector containing the elements of the set N ,

m parameter m,

a a list of real-valued functions, specifying the coefficients of the tvAR(p) process,

sigma a positive-valued function, specifying the variance of the innovations of the
tvAR(p) process,

Details

The function MSPE
(p,h)
∆1,∆2

(u) is defined, for real-valued u and ∆1,∆2 ≥ 0, in terms of the second
order properties of the process:

MSPE
(p,h)
∆1,∆2

(u) :=

∫ 1

0

g
(p,h)
∆1

(
u+∆2(1− x)

)
dx,

with g
(0,h)
∆ (u) := γ0(u) and, for p = 1, 2, . . .,

g
(p,h)
∆ (u) := γ0(u)− 2

(
v
(p,h)
∆ (u)

)′
γ
(p,h)
0 (u) +

(
v
(p,h)
∆ (u)

)′
Γ
(p)
0 (u)v

(p,h)
∆ (u)

γ
(p,h)
0 (u) :=

(
γh(u), . . . , γh+p−1(u)

)′
,
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where
v
(p,h)
∆ (u) := e′1

(
e1
(
a
(p)
∆ (t)

)′
+H

)h
,

with e1 and H defined in the documentation of predCoef and, for every real-valued u and ∆ ≥ 0,

a
(p)
∆ (u) := Γ

(p)
∆ (u)−1γ

(p)
∆ (u),

where

γ
(p)
∆ (u) :=

∫ 1

0

γ(p)(u+∆(x− 1))dx, γ(p)(u) := [γ1(u) . . . γp(u)]
′,

Γ
(p)
∆ (u) :=

∫ 1

0

Γ(p)(u+∆(x− 1))dx, Γ(p)(u) := (γi−j(u); i, j = 1, . . . , p).

The local autocovariances γk(u) are defined as the lag-k autocovariances of an AR(p) process
which has coefficients a1(u), . . . , ap(u) and innovations with variance σ(u)2, because the underly-
ing model is assumed to be tvAR(p)

Yt,T =

p∑
j=1

aj(t/T )Yt−j,T + σ(t/T )εt,

where a1, . . . , ap are real valued functions (defined on [0, 1]) and σ is a positive function (defined
on [0, 1]).

Value

Returns a vector with the values f(δ), as defined in (10) of Kley et al. (2017), for each δ in
which.delta.

Examples

## Not run:
## because computation is quite time-consuming.
n <- 100
a <- list( function(u) {return(0.8+0.19*sin(4*pi*u))} )
sigma <- function (u) {return(1)}

Ns <- seq( floor((n/2)^(4/5)), floor(n^(4/5)),
ceiling((floor(n^(4/5)) - floor((n/2)^(4/5)))/25) )

which.deltas <- c(0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6)
P_max <- 7
H <- 1
m <- floor(n^(.85)/4)

# now replicate some results from Table 4 in Kley et al. (2017)
f( which.deltas, P_max, h = 1, n - m, Ns, m, a, sigma )
f( which.deltas, P_max, h = 5, n - m, Ns, m, a, sigma )

## End(Not run)
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measure-of-accuracy Mean squared or absolute h-step ahead prediction errors

Description

The function MSPE computes the empirical mean squared prediction errors for a collection of h-step
ahead, linear predictors (h = 1, . . . ,H) of observations Xt+h, where m1 ≤ t + h ≤ m2, for two
indices m1 and m2. The resulting array provides

1

mlo −mup + 1

mup∑
t=mlo

R2
(t),

with R(t) being the prediction errors

Rt := |Xt+h − (Xt, . . . , Xt−p+1)v̂
(p,h)
N,T (t)|,

ordered by magnitude; i.e., they are such that R(t) ≤ R(t+1). The lower and upper limits of the
indices are mlo := m1 − h + ⌊(m2 −m1 + 1)α1⌋ and mup := m2 − h − ⌊(m2 −m1 + 1)α2⌋.
The function MAPE computes the empirical mean absolute prediction errors

1

mlo −mup + 1

mup∑
t=mlo

R(t),

with mlo, mup and R(t) defined as before.

Usage

MSPE(X, predcoef, m1 = length(X)/10, m2 = length(X), P = 1, H = 1,
N = c(0, seq(P + 1, m1 - H + 1)), trimLo = 0, trimUp = 0)

MAPE(X, predcoef, m1 = length(X)/10, m2 = length(X), P = 1, H = 1,
N = c(0, seq(P + 1, m1 - H + 1)), trimLo = 0, trimUp = 0)

Arguments

X the data X1, . . . , XT

predcoef the prediction coefficients in form of a list of an array coef, and two integer vec-
tors t and N. The two integer vectors provide the information for which indices
t and segment lengths N the coefficients are to be interpreted; (m1-H):(m2-1)
has to be a subset of predcoef$t. if not provided the necessary coefficients will
be computed using predCoef.

m1 first index from the set in which the indices t+ h shall lie

m2 last index from the set in which the indices t+ h shall lie

P maximum order of prediction coefficients to be used; must not be larger than
dim(predcoef$coef)[1].
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H maximum lead time to be used; must not be larger than dim(predcoef$coef)[3].

N vector with the segment sizes to be used, 0 corresponds to using 1, ..., t; has to
be a subset of predcoef$N.

trimLo percentage α1 of lower observations to be trimmed away

trimUp percentage α2 of upper observations to be trimmed away

Value

MSPE returns an object of type MSPE that has mspe, an array of size H×P×length(N), as an attribute,
as well as the parameters N, m1, m2, P, and H. MAPE analogously returns an object of type MAPE that
has mape and the same parameters as attributes.

Examples

T <- 1000
X <- rnorm(T)
P <- 5
H <- 1
m <- 20
Nmin <- 20
pcoef <- predCoef(X, P, H, (T - m - H + 1):T, c(0, seq(Nmin, T - m - H, 1)))

mspe <- MSPE(X, pcoef, 991, 1000, 3, 1, c(0, Nmin:(T-m-H)))

plot(mspe, vr = 1, Nmin = Nmin)

plot.measure-of-accuracy

Plot a MSPE or MAPE object

Description

The function plot.MSPE plots a MSPE object that is returned by the MSPE function. The function
plot.MAPE plots a MAPE object that is returned by the MAPE function.

Usage

## S3 method for class 'MSPE'
plot(x, vr = NULL, h = 1, N_min = 1, legend = TRUE,
display.mins = TRUE, add.for.legend = 0, ...)

## S3 method for class 'MAPE'
plot(x, vr = NULL, h = 1, N_min = 1, legend = TRUE,
display.mins = TRUE, add.for.legend = 0, ...)
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Arguments

x The MSPE or MAPE object to be plotted.

vr parameter to plot a line at level vr. Intended to be used to plot the mean squared
prediction error of the trivial, null predictor; optional.

h Defines for which h-step predictor the mean squared prediction errors will be
shown; default: 1.

N_min If specified, the mean squared prediction errors with N < Nmin will not be
shown; integer and optional.

legend Flag to specify if a legend, indicating which colour of the lines corresponds to
which p, will be shown; default: TRUE.

display.mins Flag to specify if the minima for each p, and the minimum accross N = 0 will
be highlighted.

add.for.legend add this much extra space for the legend, right of the lines.

... Arguments to be passed to the underlying plot method

Value

Returns the plot, as specified.

See Also

MSPE, MAPE

predCoef h-step Prediction coefficients

Description

This function computes the localised and iterated Yule-Walker coefficients for h-step ahead fore-
casting of Xt+h from Xt, ..., Xt−p+1, where h = 1, . . . , H and p = 1, . . . , P.

Arguments

X the data X1, . . . , XT

P the maximum order of coefficients to be computed; has to be a positive integer

H the maximum lead time; has to be a positive integer

t a vector of values t; the elements have to satisfy max(t) <= length(X) and
min(t) >= min(max(N[N != 0]),p).

N a vector of values N ; the elements have to satisfy max(N[N != 0]) <= min(t)
and min(N[N != 0]) >= 1 + P. N = 0 corresponds to the case where all data is
taken into account.
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Details

For every t ∈ t and every N ∈ N the (iterated) Yule-Walker estimates v̂(p,h)N,T (t) are computed. They
are defined as

v̂
(p,h)
N,T (t) := e′1

(
e1
(
â
(p)
N,T (t)

)′
+H

)h
, N ≥ 1,

and

v̂
(p,h)
0,T (t) := v̂

(p,h)
t,T (t),

with

e1 :=


1
0
...
0

 , H :=


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . . · · · 0 0
0 0 · · · 1 0


and

â
(p)
N,T (t) :=

(
Γ̂
(p)
N,T (t)

)−1
γ̂
(p)
N,T (t),

where

Γ̂
(p)
N,T (t) :=

[
γ̂i−j;N,T (t)

]
i,j=1,...,p

, γ̂
(p)
N,T (t) :=

(
γ̂1;N,T (t), . . . , γ̂p;N,T (t)

)′
and

γ̂k;N,T (t) :=
1

N

t∑
ℓ=t−N+|k|+1

Xℓ−|k|,TXℓ,T

is the usual lag-k autocovariance estimator (without mean adjustment), computed from the obser-
vations Xt−N+1, . . . , Xt.

The Durbin-Levinson Algorithm is used to successively compute the solutions to the Yule-Walker
equations (cf. Brockwell/Davis (1991), Proposition 5.2.1). To compute the h-step ahead coefficients
we use the recursive relationship

v̂
(p)
i,N,T (t, h) = â

(p)
i,N,T (t)v̂

(p,h−1)
1,N,T (t) + v̂

(p,h−1)
i+1,N,T (t)I{i ≤ p− 1},

(cf. the proof of Lemma E.3 in Kley et al. (2017)).

Value

Returns a named list with elements coef, t, and N, where coef is an array of dimension P × P × H
× length(t) × length(N), and t, and N are the parameters provided on the call of the function.
See the example on how to access the vector v̂(p,h)N,T (t).

References

Brockwell, P. J. & Davis, R. A. (1991). Time Series: Theory and Methods. Springer, New York.
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Examples

T <- 100
X <- rnorm(T)

P <- 5
H <- 1
m <- 20

Nmin <- 25
pcoef <- predCoef(X, P, H, (T - m - H + 1):T, c(0, seq(Nmin, T - m - H, 1)))

## Access the prediction vector for p = 2, h = 1, t = 95, N = 25
p <- 2
h <- 1
t <- 95
N <- 35
res <- pcoef$coef[p, 1:p, h, pcoef$t == t, pcoef$N == N]

ts-models-tvARMA Simulation of an tvARMA(p) time series.

Description

Returns a simulated time series Y1,T , ..., YT,T that fulfills the following equation:

Yt,T =

p∑
j=1

aj(t/T )Yt−j,T + σ(t/T )εt +

q∑
k=1

σ((t− k)/T )bk(t/T )εt−k,

where a1, . . . , ap, b0, b1, . . . , bq are real-valued functions on [0, 1], σ is a positive function on [0, 1]
and εt is white noise.

Usage

tvARMA(T = 128, a = list(), b = list(), sigma = function(u) {
return(1) }, innov = function(n) { rnorm(n, 0, 1) })

Arguments

T length of the time series to be returned

a list of p real-valued functions defined on [0, 1]

b list of q real-valued functions defined on [0, 1]

sigma function

innov a function with one argument n that simulates a vector of the n residuals εt.

Value

Returns a tvARMA(p,q) time series with specified parameters.
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Examples

## Taken from Section 6 in Dahlhaus (1997, AoS)
a1 <- function(u) {1.8 * cos(1.5 - cos(4 * pi * u))}
a2 <- function(u) {-0.81}
plot(tvARMA(128, a = list(a1, a2), b = list()), type = "l")

tvARMAcpp Workhorse function for tvARMA time series generation

Description

More explanation!

Arguments

z a ...

x_int a ...

A ...

B a ...

Sigma a ...

Value

Returns a ...
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