Package: forecastSNSTS 1.2-0.9000

Tobias Kley

forecastSNSTS: Forecasting for Stationary and Non-Stationary Time Series

Methods to compute linear h-step ahead prediction coefficients based on localised and iterated Yule-Walker estimates and empirical mean squared and absolute prediction errors for the resulting predictors. Also, functions to compute autocovariances for AR(p) processes, to simulate tvARMA(p,q) time series, and to verify an assumption from Kley et al. (2017), Preprint <http://personal.lse.ac.uk/kley/forecastSNSTS.pdf>.

Authors:Tobias Kley [aut, cre], Philip Preuss [aut], Piotr Fryzlewicz [aut]

forecastSNSTS_1.2-0.9000.tar.gz
forecastSNSTS_1.2-0.9000.zip(r-4.5)forecastSNSTS_1.2-0.9000.zip(r-4.4)forecastSNSTS_1.2-0.9000.zip(r-4.3)
forecastSNSTS_1.2-0.9000.tgz(r-4.4-x86_64)forecastSNSTS_1.2-0.9000.tgz(r-4.4-arm64)forecastSNSTS_1.2-0.9000.tgz(r-4.3-x86_64)forecastSNSTS_1.2-0.9000.tgz(r-4.3-arm64)
forecastSNSTS_1.2-0.9000.tar.gz(r-4.5-noble)forecastSNSTS_1.2-0.9000.tar.gz(r-4.4-noble)
forecastSNSTS_1.2-0.9000.tgz(r-4.4-emscripten)forecastSNSTS_1.2-0.9000.tgz(r-4.3-emscripten)
forecastSNSTS.pdf |forecastSNSTS.html
forecastSNSTS/json (API)
NEWS

# Install 'forecastSNSTS' in R:
install.packages('forecastSNSTS', repos = c('https://tobiaskley.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/tobiaskley/forecastsnsts/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

3.40 score 5 stars 9 scripts 175 downloads 5 exports 1 dependencies

Last updated 7 years agofrom:484fed0c1f. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64NOTENov 04 2024
R-4.5-linux-x86_64NOTENov 04 2024
R-4.4-win-x86_64NOTENov 04 2024
R-4.4-mac-x86_64NOTENov 04 2024
R-4.4-mac-aarch64NOTENov 04 2024
R-4.3-win-x86_64NOTENov 04 2024
R-4.3-mac-x86_64NOTENov 04 2024
R-4.3-mac-aarch64NOTENov 04 2024

Exports:acfARpfMSPEpredCoeftvARMA

Dependencies:Rcpp